

i7 Contour & i7T Contour USER MANUAL

CONTENTS

- 1.Introduction
- 2. Unpacking
- 3. Connectors/Cabling
- 4. Polarity Checking
- 5. Amplification & Power Handling
- 6. Power Selection
- 7. Equalisation
- 8. Dimensions
- 9. Hardware
- 10.Performance Data
- 11. Technical Specifications
- 12. Troubleshooting Guide
- 13.i7 Contour Recommended Service Parts & Accessories
- 14.Warranty
- 15. Declaration of Conformity

1. Introduction

Introducing the **Tannoy i7 Contour** infinite baffle installation loudspeaker, designed for use in applications requiring high quality music and speech where wide, yet controlled, coverage is needed.

The i7 Contour comprises four 4-inch (mm) low frequency (LF) drivers and one high frequency (HF) unit. The LF and HF sources are placed in an array, resulting in a wide horizontal dispersion and narrow vertical dispersion. These are combined with a smooth uniform frequency response and excellent acoustic impedance characteristics.

With its slim-line cabinet the i7 Contour's shallow profile allows discreet vertical or horizontal mounting close to a wall or ceiling and is available in dark grey or white to effectively blend into most backgrounds. Utilisation of the dispersion characteristics (110°×70°) of the loudspeaker allows the i7 Contour to be used in highly reverberant environments, by directing the sound into the desired space whilst minimising reflections from adjacent walls or ceilings. An optional mounting bracket ensures simple and effective installation.

Also available with a built in THP 60 low insertion loss transformer the **i7T Contour** provides a more dynamic performance with greater bandwidth than other 70/100V line systems.

For applications requiring extended low frequency enhancement, a range of Tannoy sub-bass systems are available and can be used in conjunction with the i7 Contour.

2. Unpacking

Every Tannoy i7 Contour product is carefully inspected before packing. After unpacking your loudspeakers, please inspect for any exterior physical damage, and save the carton and any relevant packaging materials in case the loudspeaker again requires packing and shipping. In the event that damage has been sustained in transit notify your dealer immediately.

3. Connectors/Cabling

The i7 Contour has two screw terminals for connection to the amplifier, these are goldplated in order to improve electrical conductivity and to prevent oxidisation. These terminals are capable of accepting cables with a conductor diameter of up to 6mm.

Red is Positive Black is Negative

Cable choice consists mainly of selecting the correct cross sectional area in relation to the cable length and the load impedance. A small cross sectional area would increase the cables' series resistance, inducing power loss and response variations (damping factor).

Connectors should be wired with a minimum of 2.5 mm² (12 gauge) cable. This will be perfectly satisfactory under normal conditions. In the case of very long cable runs the wire size should exceed this, refer to the following table for guidance:-

CABLE RUN	C.S.A. OF EACH	CABLE	% POWER LOSS	% POWER LOSS
(m)	CONDUCTOR (mm)	RESISTANCE W	INTO 8WW LOAD	INTO 4W LOAD
10	2.5	0.14	1.7	3.5
	4.0	0.09	1.1	2.2
	6.0	0.06	0.73	1.5
25	2.5	0.35	4.3	8.6
	4.0	0.22	2.7	5.4
	6.0	0.14	1.8	3.6
50	2.5	0.69	8.6	17.0
	4.0	0.43	5.4	11.0
	6.0	0.29	3.6	7.2
100	2.5	1.38	17.0	35.0
	4.0	0.86	11.0	22.0
	6.0	0.58	7.2	14.0

4. Polarity Checking

It is most important to check the polarity of the wiring. A simple method of doing this without a pulse based polarity checker for LF units is as follows: Connect two wires to the +^{ve} and -^{ve} terminals of a PP3 battery. Apply the wire that is connected to the +^{ve} terminal of the battery to the speaker cable leg which you believe to be connected to the red speaker terminal and likewise the -^{ve} leg of the battery to the black speaker terminal.

If you have wired it correctly the LF drive units will move forward, indicating the wiring is correct. All that remains now is to connect the +^{ve} speaker lead to the +^{ve} terminal on the amplifier and the -^{ve} lead to the -^{ve} terminal on the amplifier. If however the LF drivers moves backwards, the input connections need to be inverted.

If problems are encountered, inspect the cable wiring in the first instance. It should also be noted that different amplifier manufacturers utilise different pin configurations and polarity conventions, if you are using amplifiers from more than one manufacturer, check the polarity at the amplifiers as well as the loudspeakers.

5. Amplification & Power Handling

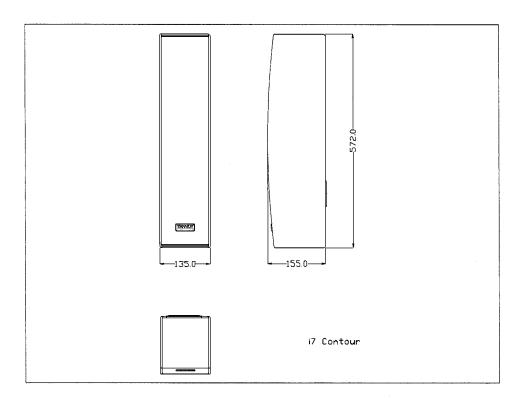
As with all professional loudspeaker systems, the power handling is a function of voice coil thermal capacity. Care should be taken to avoid running the amplifier into clip (clipping is the end result of overdriving any amplifier). Damage to the loudspeaker will be sustained if the amplifier is driven into clip for any extended period of time. Headroom of at least 3dB should be allowed. When evaluating an amplifier, it is important to take into account its behaviour under low impedance load conditions. A loudspeaker system is highly reactive and with transient signals it can require more current than the nominal impedance would indicate.

Generally a higher power amplifier running free of distortion will do less damage to the loudspeaker than a lower power amplifier continually clipping. It is also worth remembering that a high powered amplifier running at less than 90% of output power generally sounds a lot better than a lower power amplifier running at 100%. An amplifier with insufficient drive capability will not allow the full performance of the loudspeaker to be realised.

It is important when using different manufacturers amplifiers in a single installation that the have very closely matched gains, the variation should be less than +/- 0.5dB. This precaution is important to the overall system balance when only a single compressor/limiter or active crossover is being used with multiple cabinets; it is therefore recommended that the same amplifiers be used throughout.

6. Power Selection (i7T Contour)

Determine the maximum power in watts needed at each speaker location. The i7 Contour transformer can be tapped at 15W, 30W & 60W (left to right positions respectively) via the rotary switch located on the rear of the loudspeaker cabinet. When the relevant tappings have been selected add the individual wattages required at all speakers and select an amplifier with a rating equal to or exceeding the total wattage required. All of the transformer primaries should be connected in parallel to the output of this amplifier. If for example, you select the 15-watt transformer tap, it means that at full rated amplifier output the speaker will receive the full 15 watts. If the amplifier gain is reduced each speaker will receive a proportional amount of power, maintaining the overall system balance.


When calculating amplifier wattage requirements for a system, it is recommended that a generous wattage safety margin (3dB of headroom) be left so that the system does not have to operate continuously at its full rated output

7. Equalisation

The i7 Contour loudspeaker is designed to need no equalisation or correction to overcome system limitations. As a result, it will only need equalisation to compensate for difficult acoustic environments.

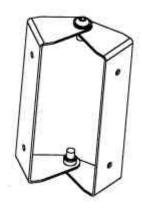
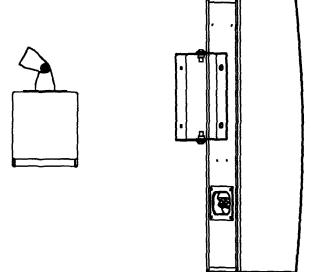
Over equalisation can reduce system headroom, and introduce phase distortion resulting in greater problems than cures. If equalisation is required then it should be applied gently and smoothly.

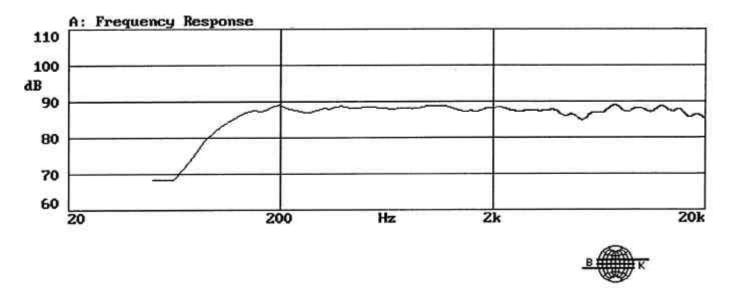
8. Dimensions

9. Hardware

The i7 Contour can be wall or ceiling mounted using the **MB7** (optional) bracket (*fig 1*.) which is designed to rotate about its axis. The MB7 is supplied with M6 bolts for fixing to the loudspeaker. After fixing the bracket to the wall or ceiling, position the cabinet at the required angle as shown (*fig. 2*) and tighten the M6 bolts to fix the loudspeaker into position.

The loudspeaker can be mounted either horizontally or vertically using the MB7 bracket (fig. 2.).


Figure 1

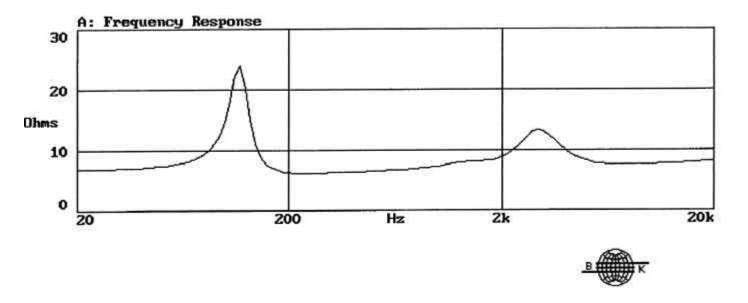
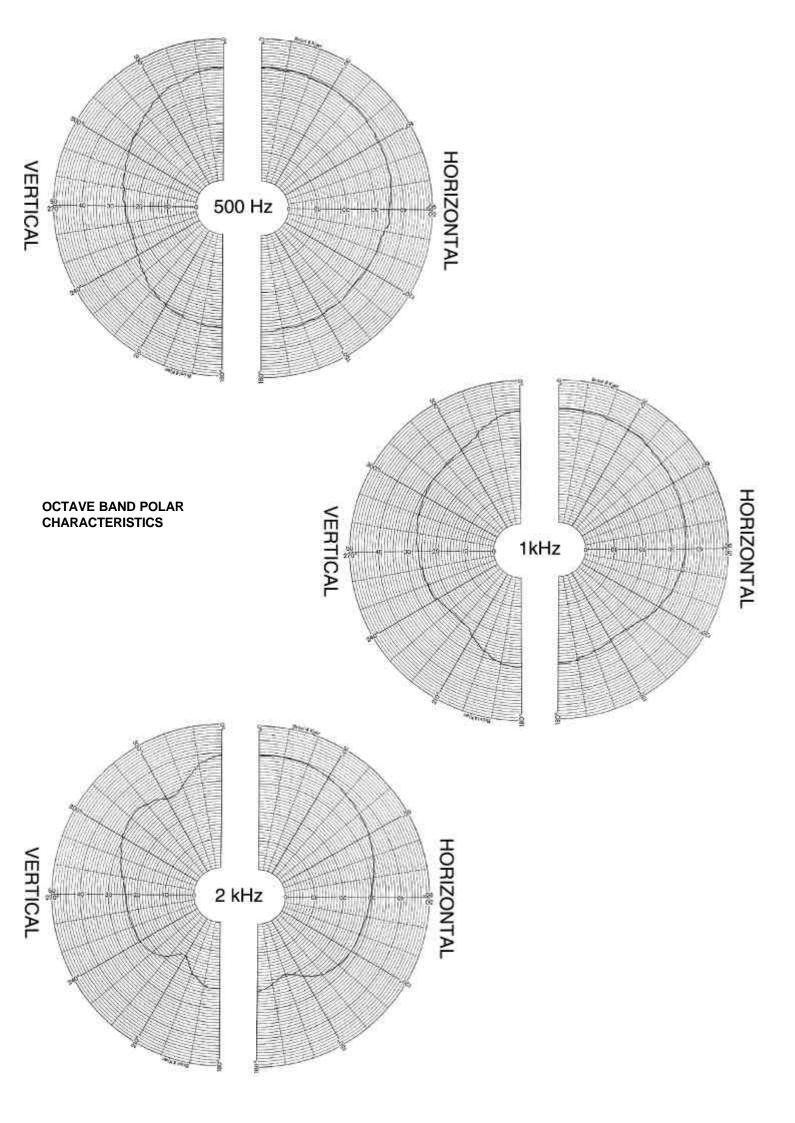
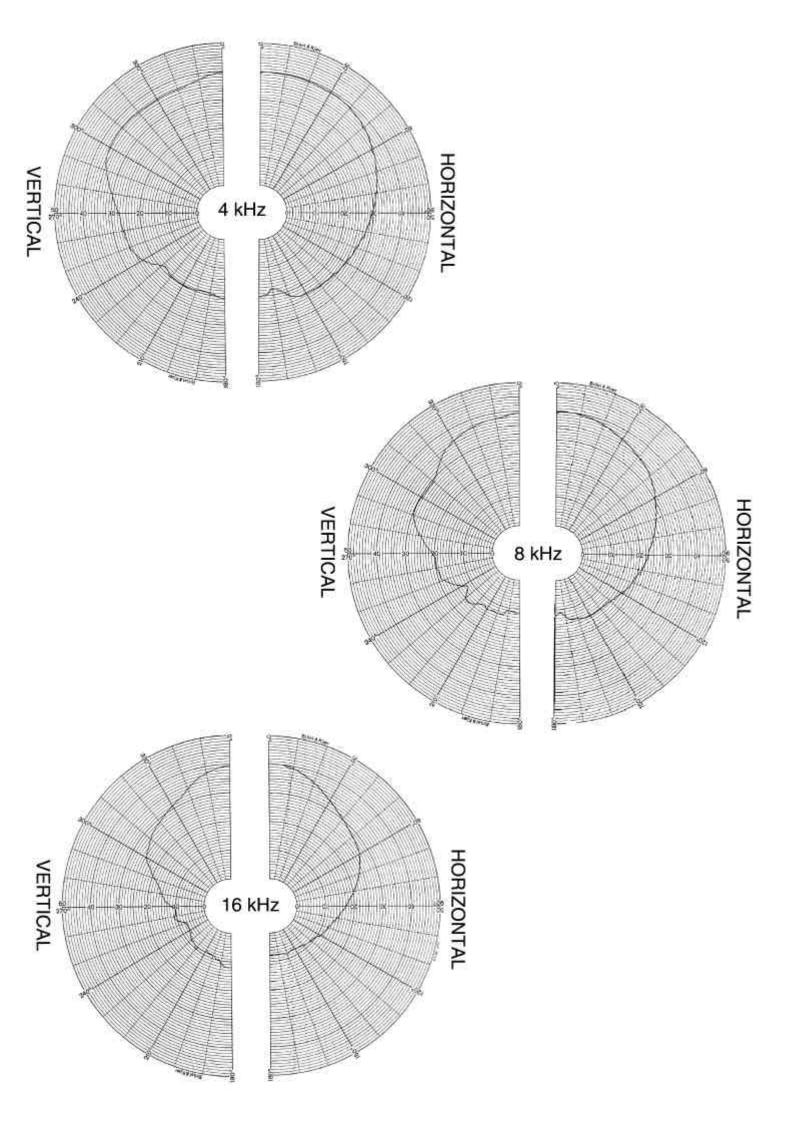

NOTE: The installation of this product must be carried out in conformity with local building codes and standards. If necessary consult your local safety standards officer before installing any product. Alternatively, check any laws or bylaws. Tannoy will not be held responsible for any damages caused by the improper installation of any bracket or loudspeaker.

Figure 2


10. Performance Data



Frequency Response

<u>Impedance</u>

11. Technical Specifications

Frequency response (1) +3/- 6dB 90Hz - 20kHz

Recommended Amplifier Power up to 180 watt / 8 ohm

Power Handling Average (2) Programme Peak (10ms)

90-watt 180 watt 360 watt

Sensitivity (1)

Driver Complement

92dB (half space) 2.83 volt @ 1m 89dB

Maximum SPL (3) Average (half space) Peak (half space) Average Peak

108dB 111dB @ 1m 114dB 117dB

Maximum SPL (3) With THP60 Transformer Average Peak Average (half space) Peak (half space)

106 dB 112dB 109dB @ 1m 115dB

Nominal 8Ω **Impedance**

Minimum 6.2Ω

Nominal Dispersion 70° Vertical

110° Horizontal

Voltage tap ratings for 100V-line Position Watts Ω

transformer version Left 15 677

Middle 30 333 Right 60 166

Transformer (i7T Contour) 0.9 dB Insertion loss

Primary Taps 60, 30, 15 Watt

Voltage Taps 100, 70, 25 Volts

> 1×1 " Neodinium HF unit 4 × 4" LF drivers

Crossover Point 1.8. 2.5 kHz

Enclosure 7 litres

Finish Dark grey or White

Protective Grille Perforated Stainless Steel

2 × 4mm binding posts Connectors

Fittings 2 × M6 inserts for MB7 Bracket

Dimensions 560mm (H) \times 130mm (W) \times 146mm (D)

22.06" (H) \times 5.12" (W) \times 5.75" (D)

Weight 8.1kg (17.86 lbs.)

Shipping Dimensions 650mm (H) × 210mm (W) × 220mm (D)

25.61" (H) × 8.27" (W) × 8.67" (D)

Shipping Weight 9kg (19.84 lbs.)

NOTES: (1) Average over stated bandwidth. Measured at 1m on axis, in an anechoic chamber.

(2) Long term power handling capacity as defined in EIA standard RS - 426A.

(3) Unweighted pink noise input, measured at 1m

Tannoy operates a policy of continuous research and development. The introduction of new materials or manufacturing methods will always equal or exceed the published specifications which Tannoy reserve the right to alter without prior notice. Please verify the latest specifications when dealing with critical applications.

12. Troubleshooting Guide

Symptom	Possible Cause	Action
No Output From Speakers	Broken Speaker Cables(s)	Check the electrical continuity of
		the loudspeaker cables, and
	Amplifier	replace if necessary.
	, unpilio	Check the gain controls on the
		amplifier are turned up.
		Do ours the amplifier is receiving
		Be sure the amplifier is receiving an input signal (check the
		"signal" indicators on the amp).
		Connect the loudspeaker cable
		which has no output to another
		amplifier channel you know is
		working, make sure signal is fed to the new amplifier channel. If
		output is obtained from the
		loudspeakers(s) then the
		problem is with the amplifier
		channel or input signal leads. If this is not the case then the fault
		may lie in the cabling or the
		loudspeaker.
Intermittent Output	Poor Connection	Check the loudspeaker cabling
		has a good electrical connection with amplifier outputs and
		loudspeaker inputs. A bad
		connection can increase
		resistance which will
		substantially reduce the output, or make "cracking" noises which
		are unrelated to signal content
		If using moulting transplants also
		If using multi-strand loudspeaker cable, be sure no strands of
		cable are causing short circuits
		between the positive and
		negative terminals of the
		amplifier outputs and/or loudspeaker inputs.
Poor Low Frequency	"Out of phase" connection	When two speakers are
Output	·	connected "out of phase", the
		low frequencies will virtually be cancelled out. Check the
		cancelled out. Check the connections at the
		amplifier/speaker paying
		attention to polarity. (See section
Irrogular aquada ayab aa	Door avotom arounding	4).
Irregular sounds such as buzzing and humming	Poor system grounding	Check and correct system grounding.
emanating from the		g. 2 3 i d i g.
loudspeaker	Faulty electronic device in	The speaker cannot generate
	the signal chain	these sounds on its own. It is most likely there is a fault with a
		piece of electronic equipment in
		the signal path.

13. i7 Contour & i7T Contour Service Parts & Accessories

Part Number	Description
3121 0039	LF Driver Unit
3121 0062	HF Driver Unit
7300 0705	Crossover Kit - 1295 (for i7 Contour)
7300 0711	Crossover Kit - 1296 (for i7T Contour)
8001 1120	MB7 Bracket - Black
8001 1130	MB7 Bracket - White

14. Warranty

No maintenance of the i7 Contour loudspeaker is necessary.

All Tannoy professional loudspeaker products are covered by a 5-year warranty from the date of manufacture subject to the absence of misuse, overload or accidental damage. Claims will not be considered if the serial number has been altered or removed. Work under warranty should only be carried out by a Tannoy Professional dealer or service agent. This warranty in no way affects your statutory rights. For further information please contact your dealer or distributor in your country. If you cannot locate your distributor please contact Customer Services, Tannoy Ltd at the address given below.

Customer Services Professional Division Tannoy Ltd. Coatbridge Scotland ML5 4TF

Telephone:	01236 420199	(National)
	+44 1236 420199	(International)
Fax:	01236 428230	(National)
	+44 1236 428230	(International)
□ N4=:1.		•

E-Mail: prosales@tannoy.com

DO NOT SHIP ANY PRODUCT TO TANNOY WITHOUT PREVIOUS AUTHORISATION

Our policy commits us to incorporating improvements to our products through continuous research and development. Please confirm current specifications for critical applications with your supplier.

EASEO Data for Tannoy Professional products available on request and from Tannoy's web site: http://www.tannoy.com

15. Declaration of Conformity

The following apparatus is/are manufactured in the United Kingdom by Tannoy Ltd of Rosehall Industrial estate, Coatbridge, Scotland, ML5 4TF and conform(s) to the protection requirements of the European Electromagnetic Compatibility Standards and Directives relevant to Domestic Electrical Equipment. The apparatus is designed and constructed such that electromagnetic disturbances generated do not exceed levels allowing radio and telecommunications equipment and other apparatus to operate as intended, and, the apparatus has an adequate level of intrinsic immunity to electromagnetic disturbance to enable operation as specified and intended.

Details of the Apparatus: Model Number: i7 Contour

Associated Technical File: EMCi7

dilla Li

Applicable Standards: EN 50081-1 Emission

EN 50082-1 Immunity

Signed:

Position: Electro-acoustics Development Engineer

Tannoy Professional

Date: 24 Aug. 99

For Tannoy Ltd

Tannoy Loudspeakers are manufactured in Great Britain by :

Tannoy Ltd,
Coatbridge, Scotland. ML5 4TF.
Telephone: +44 (0)1236 420199 Fax: +44 (0)1236 428230
Internet:http://www.tannoy.com

TGI/Tannoy, 300 Gage Avenue, Kitchener, Ontario, CANADA, N2M 2C8 Telephone: (519) 745 1158 Fax: (519) 745 2364

Tannoy Nederland BV, Anthonetta Kuijistratt 19, 3066GS, Rotterdam THE NETHERLANDS Telephone: (015) 2124034 Fax: (015) 2125213

Tannoy is a member of the Tgi Group of Companies Issue 1 Part No. 6481 0307

ML 24th August 1999